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summary 

Octafluorocyclooctatetraene (OFCOT) reacts with some metal carbonyl 
anions [MLn 1’ to give monosubstitution products (C8F,)ML, [ML, = 
Mn(CO), , Re(CO),, F~(CO),(Q-C&H,)] . lgF and 13C {19F} NMR studies 
show that the cyclooctatetraene ring in these monosubstitu~on products 
does not undergo rapid ring-inversion or bond shifting on the NMR time 
scale. Reaction of OFCOT with [ CofCO), ]- affords the distributed derivative 
[(C, F6 )Co, (CO),] as the only product in poor yield. 

The organometallic chemistry of cyclooctatetraene (COT) has been thor- 
oughly explored and invariably COT binds to transition metals via the n-bond 
system of the ring [1,2 ] , We have been inv~tigating the corresponding chem- 
istry of the recently synthesized [ 31 and characterized [ 41 perfluorinated 
analogue, octafluorocyclooctatetraene (OFCOT), and have uncovered novel 
bonding modes [ 51 and transannular ring closure reactions [ 61 which are 
quite different from COT chemistry. The known reactions of fluorocarbon 
olefins, arenes and heterocycles [ 7 ] with metal carbonyl anions to afford 
products arising from net fluoride ion displacement has prompted us to at- 
tempt such substitution reactions with OFCOT, with a view to preparing 
metal derivatives bound to the cyclooctatetraene skeleton via a u-bond. 

Reaction of equimolar amounts of OFCOT and [ Fe(CO)* (?$,H,)]- Na’ 
in dry THF (2O’C; 24 h) afforded, after chromatography (Florisil), the yellow, 
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sublimable, crystahine monosubstitution product 1 [404b; m.p. 92°C; 1R 
(hexane) v(C0) 2041 s, 1997s cm” ; mass spectrum, m/e 406 (P’), 378 
(zJ’- CO), 350 (P’ - X0); 19F NMR (CDC13 ; 20°C; 56 MHz) 6 (upfield from 
internal CFCIB) 74.55, 93.82,119.03,124.84,128.97,130.83,140,29 (all 
muItip1et.s of relative intensity = l)*; i3C {19F) NMR spectrum** tCDCl3 ; 

20°C; 50 MHz) 6 (downfield from internal TMS) 85.51 (d, J(C-I-I) 181 Hz, 
CSHs), 126.07 (-C-Fe), 127.60,136.30,137.73,138.84, 140.24, 149.81, 
152.87 (all =C-F), 212.53 (CO), 212.45 ppm (CO)***; Analysis: Found: 
C, 44.50; H, 1.27. C15HSF,Fe02 calcd.: C, 44.37; H, 1.24%]. Likewise, 
reaction of OFCOT with either [ Re(CO)S ) - or [ Mn(CO), ] - afforded the 
white, sublimable, crystahine products 2 [60%; m.p. 100°C; IR (hexane) 
v(C0) 2142w, 2034s, 2004s cm” ; m/e 556 (P’ using 18’Re); 19F NMR 6 
65.09, 93.65, 120.46, 125.23, 127.75, 129.66, 142.24 ppm; 13C {19F} NMR 
spectrum 6 115.95 (=C-Re), 128.30,136.56,137.49,138.48,139.80,150.64, 
152.94 (all =CF), 179.37 (CO buns), 179.68 ppm (CO&s); Analysis, C, 28.16; H, 
0.0. &F,ReOS calcd.: C, 28.11; H, O.OO%], and 3 [60%; m.p. 77°C; IR 
(hexane) v(C0) 2127w, 2039s, 2013s cm” ; m/e 424 (P’); 19F NMR, S 67.10, 
93.91, 119.85,125.67,127.75,130.09,141.29 ppm; Analysis, C, 36.88; H, 0.0 
CJF7Mn05 calcd.: C, 36.82; H, O.OO%] , respectively. In contrast, the reac- 
tion of OFCOT with the weakly nucleophihc [ 81 [Co(CO), ]- anion was ex- 
tremely sluggish and yielded no monosubstitution product after 5 days in THF 
(20°C); however, traces (2%) of a red crystalline compound apparently result- 
ing from net displacement of two adjacent fluorines were obtained under 
these conditions. On the basis of its physical and spectroscopic properties this 
compound is formulated as [CO,(CO)~(C~F~) [m.p. 110°C; IR (hexane) 
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u(C0) 2105m, 2074s, 2054s cm-’ ; m/e 496 (P’), 468 (P+ - CO), 440 (P’ - 
2CO), 412 (P+ - 3CO), 384 (P+ - 4CO), 356 (P+ - 5CO), 328 (P+ - 6CO); 
19F NMR 6 105.4 (m, 2F), 124.9 (m, 2F), 136.3 (m, 2F); Analysis, C, 34.06; 
H, 0.0. C1.,F,Co20s calcd.: C, 33.90; H, O.OO%] . Accordingly we have assigned 
structure 4 to this compound by analogy to the large number of known (p- 
alkyne)hexacarbonyldicobalt species [ 91. Final confirmation of the struc- 
ture awaits an X-ray crystallographic study; a related fluorocarbon compound 
(c(-C&F~)CO~(CO)~ has been reported [lo]. 

The activation energy barriers for ring inversion of the tub conformation of 
COT and its derivatives, and of bond-shift isomerism in the corresponding 
planar intermediate, have been the subject of considerable interest [ 111. No 
such data have been reported for fluorinated derivatives. Observation of seven 
discrete 19F NMR resonances for compounds 1,2 and 3 clearly rules out a 
facile combined ring inversion-bond shift process for these molecules. Obser- 
vation of eight separate olefinic carbon resonances in the i3C { 19F) NMR spec- 
tra of 1 and 2 is also compatible with this conclusion. These data do not ex- 
clude the possibility of rapid ring inversion without concomitant bond shift 
isomerism. However the observation that the two carbonyl ligands in 1 are 
diastereotopic in the 13C (i9F} NMR spectrum rules out this option since 
rapid ring inversion must interconvert CO environments between conforma- 
tions la and lb as shown. The i9F NMR spectra of l-3 are unchanged at 
+60” C. 

It is not clear why reaction of the weakly nucleophilic [ 81 [Co(CO), ]- 
with OFCOT results in net displacement of two fluorines, with no trace of 
a monosubstitution product analogous to l-3, whereas the more powerful 
nucleophiles [ 81 give only the products of monosubstitution. A possible 
rationale involves formation of 4 by the reductive route shown below to yield 
[Co,(CO)s] and hexafluorocycloocta-3,5,7-trien-1-yne, followed by trapping 
of the alkyne by the [Co, (CO),]. The chemical product(s) of reduction of 
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+ 2colco); - 2F- + Co,(CO), t ; 
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OFCOT are unknown; attempts to generate the OFCOT mono- or dianions 
electrochemically result in irreversible behavior and decomposition [ 121. 
Alternatively 4 may be formed by interaction of OFCOT with traces of a 
polynuclear cobalt carbonyl anion. It seems extremely unlikely that two con- 
secutive nucleophilic displacements of F- occur using [ Co(CO), ] - , which 
is unreactive towards other fluorocarbons [ 71. 

Experiments designed to gain more information regarding the ring-inversion 
barriers in l-3, to understand better the mechanism of formation of 4, and 
to use 4 as a source of free hexafluorocycloocta-3,5,7-trien-1-yne are currently 
in progress. 
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